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ABSTRACT

It is demonstrated that the planar reorientation of a free—free beam in zero gravity space can be
accomplished by periodically changing the shape of the beam using embedded electromechanical actuators.
The dynamics which determine the shape of the free—free beam is assumed to be characterized by the Euler-
Bernoulli equation, including material damping, with apppropriate boundary conditions. The coupling
between the rigid body motion and the flexible motion is explained using the angular momentum expression
which includes rotatory inertia and kinematically exact offects. A control scheme is proposed where the
embedded actuators excite the flexible motion of the beam so that it rotates in the desired sense with
respect to a fixed inertial reference. Relations are derived which relate the average rotation rate to the
amplitudes and the frequencies of the periodic actuation signal and the properties of the beam. These
reorientation maneuvers can be implemented by using feedback control.

1. INTRODUCTION

('lassical models of uniform free—free flexible beams in zero-gravity space result in complete decoupling
of rigid body motion and flexible motion. However, conservation of the angular momentum of the heam
indicates that the classical models are incomplete in the sense that there is in fact higher order nonlin-
ear coupling between the rigid body motion and the flexible motion, if rotatory inertia and kinematically
exact modeling effects are included. Assuming that the angular momentum of the beam is always zero.
oscillations in the shape of the flexible beam can actually cause a rotation of the heam with respect to a
fixed inertial reference. The rotation of the beam over one period depends only on the shape of the beam
over the period and does not depend on the length of the period: hence this phenomenon is referred to as
a geometric phase change.

These observations lead to a scheme for carrying out asymptotic reorientation of a free=free flexibie
beam in space using only electromechanical actuators embedded in the beam. These embedded electrome:
chanical actuators, e.g. piezoelectric actuators, do not change the angular momentum of the free-free heam
but they can be used to change the shape of the beam in a periodic way thereby resulting in a rotation of the

heam in space. This reorientation scheme, based on the use of embedded actuators. does not require use uf
momentum wheels or gas jets and thus requires a minimal use of fuel to achieve a given beam reorientation.

[n this paper. the basic modeling issues are addressed. The dynamics which characterize the shape
of the free-free beam is assumed to be characterized by the Euler-Bernoulli equation, including material
damping. with apppropriate boundary conditions. The coupling between the rigid body motion aud the
flexible motion is explained using the angular momentum expression. A control scheme is proposed where
the embedded actuators excite the flexible motion of the beam so that it rotates in the desired =en-e.
Relations are derived which relate the average rotation rate to the amplitudes and the frequencies of
the periodic actuation signal and the properties of the beam. These reorientation maneuvers can he
implemented by using feedback control. Important features of the approach are indicated.



2. A PLANAR FREE-FREE BEAM MODEL

Cousider a uniform free-free beam of undeformed length 2L in space with zero angular momentum and
zero linear momentum. Referring to Fig. 1 the motion of the beam is constrained to a plane defined by
vectors (€y.€3) where (£,.8;.€3) is an orthonormal basis for an inertial frame whose origin is at the center
of mass of the beam. Let (i.], k) be a rotating frame with its origin fixed at the origin of the inertial
frame such that the vectors {i, k) lie in the plane (&,.€3) and j = é,. The straight line passing through
the origin in the direction of vector k is called the reference line. Let the beam initially be at rest in a
straight line configuration aligned with the reference line. Then, the location of each point on the line of
mass centroids of the beam can be described in terms of the parameter s € [—L.L]. This parameter s
can be viewed as a label for each of the crossections. We assume that as the beam deforms the shape and
the area of the crossections remain invariant. Following other researchers!*?3 we introduce three functions
w(sot)oy(s,t) i [-L. L] x R — Rand vis.t): [-L,L] x R — T! such that (u(s.t) + s.y(s.t)) define the
coordinates of the line of centroids in the deformed configuration with respect to the moving frame (i, k) at
time f. The angle ¢(s,t) between the normal to the crossection at s and é3 specifies the orientation of the
crossection. The normal to the crossection at s is denoted by f3. We define the material basis (1), 2, t3) to
be orthonormal so that ¢; lies in the plane (€;,e3). The crossection itself can be associated with the set of
points (£1,£&;) in a compact set A C R? such that £, + &y + (u(s,t) + s)k + (y(s,t))i gives the location
of any point on the beam as & and &; vary through . and s varies from —L to L.

Since the origin of the inertial frame is fixed at the center of mass of the beam we obtain

L
/y(.s,t)d.s:(). (1)
-L

L
/ u(s,t)ds = 0. (2)
-L

Let p denote the constant mass density per unit volume of the beam. We assume that the beam has a
symmetric crossection so that the first moment of inertia of the crossection about the line of centroids is

/ pEydE dE, = 0. 1)
A
The second moment of inertia of the crossection about the line of centroids is
h= [ peideide o
A

The nass per unit length of the crossection is given by

mg = /4 pdé&id€,. (5

We define the angle 6(t) between €3 and k so that y(s,t) measured from the reference line satisfies the
following orthogonality condition .
/ sy(s,t)ds = 0. LG
-L
The existence of the angle #(t) follows from the geometry indicated in Fig. 1. This definition provides a
separation between the motion which determines the shape of the beam, given by y(s,t), —L < s < L. and
the rotation of the beam as a whole, given by 8(t).



3. EQUATIONS OF MOTION

We first develop a kinematically exact expression for the angular momentum of the free—free beam. Let
Z2(s.€1.65.8.t) be the vector from the origin of the inertial frame to a point (s,&1.&) on the beam at time
t: then

2= (ssinf + ycosh +&cosuv+ usin8)é; + (£2)é2 + (scosf — £ sinyy —ysinf + ucosf)és (7)

where 8 = 8(t),y = y(s.t) and © = w(s,t). The angular momentum about the origin of the inertial frame
at time ¢ is zero so that

L dé
/ / 3 X {-dgldggds ~0. (%)
~LJA t

Substituting equation (7) into equation (8) and using equations (4) and (5) we can express 6 in terms of
y.uand a as

L 3 . 3 3
}_L{mos%}f + Lo+ mo(Fu — %‘fy)}ds

AL
f_L{—mo.s2 - moy?® - [ }ds

(9)
where a = v — 8 is the angle between the normal {3 to the crossection at s and the reference line.

Assume that the beam is unshearable and inextensible and that the deformations are small. This
implies, using equation (2), that
u(s,t) = 0. (10)

and that
o Y. (11)

We use the Euler-Bernoulli beam model to characterize the shape of the beam.*3 Thus y(s,t) satisfies the
Euler-Bernoulli equation of the form

m
Moyt + T Ytssss + Elyssss = - Z vj(t)él(s - SJ) (12)
=1

with the boundary conditions
Yos(—L) = yss(L) = 0, (13

ysss(_L)zysss(L):O {1 h

where [ = I/p., E is Young’s elasticity modulus, é is the distributional derivative of the delta function and
where for simplicity we assume Kelvin-Voigt damping with a positive damping coefficient 7. In addition.
y(s.t) must satisfy conditions (1) and (6). Internal bending torques v,(t), j = 1,...,m are produced by
m point actuators located at s = s; on the beam where s; € (=L, L]. These embedded electromechanical
actuators change the shape of the beam but at the same time preserve the angular momentum. Althongh
such actuators are capable of inducing relatively small displacements one can excite the beam periodically
at a frequency near one of the lower resonant frequencies of the beam to obtain relatively large periodic
shape change.

Using expressions (6), (10) and (11) in equation (9) we obtain

. “f_LL 12ytsd3 -
0 = L ll')l
T+ [0 moy’ds




where 7 = %mOL:’ +2I,L. This expression demonstrates the nonlinear coupling between the heam’s shape
and its rigid body motion. Expression (15) is non-integrable in the sense that if y(s.t)is a periodic function
of time. the integral of # over one period is, in general, non-zero.

Remark 3.1 Ifin the above derivation we had not used the kinematically exact expression for the angular
momentum but had used the linearized strain assumptions we would have obtained the expression

. 1 L

0= ——/ [sttds. ( 1())
)L

As can be seen expression (16) leads to the incorrect conclusion that a periodic change in the shape of the

beam does not result in rotation of the beam. Note that inclusion of rotatory inertia effects and the use

of the kinematically exact expression for the angular momentum is necessary in order to demonstrate that

the beam can rotate in space due to periodic shape change.

We expand the solution y(s.t) to equation (12) in the series

y(s )= wis)a(t) (17)
=1
where w;(s).i = 1,2....are the orthonormal elastic mode shapes of the Euler-Bernoulli model. The elastic

mode shapes are given by

cos(/};s) — %{%cosh(ﬁis) ift=1,3,5...

lvl s} = . COS . . .
() sin(3;2) + ﬁ%smh(ﬁis) ifi=24,6...

where .3, are the positive roots of the equation
cos(23L)cosh(28L) =1

ordered according to their magnitude.

Expansion (17) provides the modal decomposition

m
Gi + g +witg =) biui(t)i=1,2... (18

=1
) 2 El13} _oAw? _ dw ; ¢ ; . i deteruine
where w2 = —= ., ¢; = g and by, = 55 ls=s,. Equation (12), or equivalently equation (18). deternunes

the shape of the beam and is called the shape space equation. Substituting equation (17)into equation ( 15
we obtain

§= -1y 21 JiGi)
T+ 2 4l

where J; = w;i(L) — wi(—L). We note that (19) is non-integrable for any truncation of the infinite scries
in (17).

it



4 ASYMPTOTIC REORIENTATION MANEUVERS

Tlie goal is to accomplish asvmptotic maneuvers, i.e. starting with 8(to) = fo, y(s.to) = yi(s.to) =0
we want to rotate the beam so that 8(t) — 84, y(s,t) — 0 and y(s.t) — 0 as t — x for some desired

angle 4.
Consider the periodic excitation of the beam at a single frequency w as
e, (t) = v9 + vf cos(wt), j = 1,2....,m (20)

Since the shape space dynamics of the free-{ree beam is asymptotically stable, the steady-state motion of
the beam is given by

q:(t) = I + a; cos(wt + ¢;) {21)
where
1 «— o e
l, = FZbuv}-. (22)
LA
a; = ! ib v? (23)
[ 1) )
\/(Wz - UJ2) + C12Ui2 J=1 ’
and
. €Wy .
¢; = —arctg (u? — wz) . (24)

The excitation function (20) should be sufficiently small so that the Euler-Bernoulli model for the shape

space dynamics remains valid®.

If 72, q2 is small comparing with 7 we can approximate

Yot ‘Z?)

T

1

T+ YR Tor

and thus

s 1 O 1 > ] o0 .

9“—;2-]:'4:“%5{2-1:41} Yt
1=1 1=1 j=1

[ntegrating over one period and using equation (21) we obtain

2 T >
9({‘) -6(0) = /0 = [z; Jifii] l 1q12} dt
i= i=

2T o0 50
w1
= /;) = [Z} —a;Jiwsin(wt + <Di)] {Z:l (I, + a; cos(wt + ¢]))2} dt
1= j=
Y, - ) , -
= 3 Z a;J:l;a;sin(¢; — &) (25
i=1 j=1,7#t

Expression (25) implies that, in general, the change in angle 6 in steady—state over one period is non-zero
thereby proving that a periodic change in shape of the beam results in a rotation of the beam; the steady-
state difference 9(%’1) — 6(0) is referred to as the geometric phase. There are cases, however, when the



geometric phase turns out to be zero.

Proposition 4.1 Assume that the steady-state motion of the beam is described by equation (21). Then.
& 2‘—’) — #(0) = 0 if anv of the following conditions hold:

l. a, =0 for all .
2.1, =0 forall {
3. 0, =0, forall ¢,

The second statement of the proposition is the most important. It implies that for a non-zero geomet-
ric phase the beam should necessarily vibrate about a non-straight line reference configuration. It follows
from expression (19) that following the motion ¢;(t) = —{, — a, cos(wt + ;) yields a steady-state geometric
phase change negative to that of {21). Therefore, in order to rotate the beam in the opposite direction it
is sufficient to reverse the signs of v+ and L'?.

Remark 4.1 Expression (25) can be used in order to predict the sign and the value of the geometric
phase. Consider a beam which has a square crossection with side size B. Assume that two actuators at
sy = —rL and s, = rL where 0 < r < | produce torques according to equation (20). Using two first modes
in the series {25) yields

. 2 \ . —
52T 00y ~ 81.5661 (( ) — (v5)°)(v ~c8)<1> )sin(¢2 — ¢1) 126)

nt 2L3ER( \/wf w? +C1w \/ —w2)? )" + cw?

where
®(r) = (sin(2.36502r) + 0.1329 sinh(2.365027))%(cos(3.92667) — 0.0279 cosh(3.92667)).

We are now in a position to formulate a specific control strategy to accomplish the asymptotic ma-
neuver. Starting at rest with 8(tq) = 6 application of control law (20) results in a nonzero rotation vver
a period. By repetition of cycles of motion (21) as many times as necessary the beam can be caused 1o
rotate closer and closer to 8. As #(t) approach 8; we can reduce the amplitude of the oscillations to zero
in a way so that #(t) — 84 as t — .

The proposed control law is of the form
vy (t) = e |07 + 07 cos(wt)| .j=1.....m, 2T

2hk=1)7 2k . . . . . . )
where &Txm <t -ty < %3 k = 1,2,... that is, the control excitation is an amplitude moduluted
function, where 15) ¢+ are constants and ¢4 denotes the scalar amplitude modulation sequence that dennes

the control excitation on the A-th cycle. Each cycle is exactly p periods.

The constants w, i-?, Ty can be chosen nearly arbitrary, although one approach is to choose . += 10

maximize the geometric phase expression

Z Z a;Jilja; sin(¢; — @)

1=1j3=1.5#:



Since |¢x| — O then g;(t) — 0 and ¢ — 0 as t — oC. By continuity #(t) — §°°" for some constant 77"
as | — ~. We want to show that #°°" = 8.

By contradiction. assume that geon > @,. Let 63 > 0 be sufficiently small so that 8™ — &3 > #,;. Choose
£3 so that
geon — By — 65 5
—_— > 0.
( N ) §3 >
Then. there exists an integer Ny such that for any k > N it follows that |ex| < &3 and |#7* — geon| < &y,
Note that for any k> V3 + Land [ > N3+ 1

1

0 _ gave 3

and 1
HCOTL _ 63 _ gd £
ref 2 | —mm > &3 > &
e
Thus. we conclude from (A2) that for any k,I > N3+ 1 it follows that e = &; # 0. Hence, we obtain
a contradiction to the convergence of the sequence ¢x to zero as k — o0o. Similar arguments lead to a
contradiction in case %" < 8. )

Finally. it follows from equations (28) and (23) that

lim (1) = 64, lim ( y(s1) ) =0.—-L<s<L
t—o0 t—o \ Ye(s,t)

The controller which we have constructed has two functions. Its main function is to excite the oscilla-
tions of the beam in such a way so that the beam rotates in the desired sense. Subsequently, the controller
serves to suppress the vibrations previously excited so that the free—free beam comes to rest with a desired
orientation. Note that control law (27) is a non-smooth feedback control law.

5. NUMERICAL EXAMPLE

Space structures can often be modeled as light and flexible beams. Consider a beam with half-lenaerl
L = L[m]. density per unit volume p = 1400{kg/m?®] and square crossection with the side size R = 0.1
Young's modulus of the beam is £ = 3.0 X 10%[.V/m?)] and the damping coefficient of Kelvin-Voigt damping
is v = 0.2. Two actuators are installed near both ends of the beam at r = 0.9. The maximal torque cach
of the actuators can produce is equal 100[Nm]. The excitation frequency w = 13[Hz] is selected to lie
between the first 10.6[H z] and the second 29[H z] resonant frequencies of the beam; 7Y and 7). j = L. 2w+
chosen using expression (26) to maximize the geometric phase change over one period. For this exauple
we choose p = 5 and v, = 72 = 0.9. We want to rotate the beam from g = 0.1{rad] at t = 0 [~r¢ 10
8, = O[rad). The dependence of the angle 8(t) [rad) on time t[sec] is shown for a part of the maneuvi 1
Fig. 2. In this case the geometric phase change over one period in steady-state predicted by expression 20
is equal to —2.7465 x 107 [rad] whereas its actual value is equal to —3.0411 x 107* [rad]. The dependerice

of the control parameter ¢ on time is shown in Figure 3.



where a;,l;,0;,1 = 1,..., are related to vJ, 0y, y=1L....m according to expressions (22)-(24). and . o

are constrained by
m m )
_0.:2 2
S ) Cae ) (7)< S
J=1 =1

In terms of v “ 7 =1,....m this is a constrained mathematical programming problem which is linear
in UJ (for ﬁ\ed Ok ) and quadratic in vy {for fixed iv?). We will subsequently denote the maximum value of
this constrained optimization problem as A#”.

The modulation sequence 44 is defined in terms of an "average” of 8(t), over the k-th cvcle, that is

gxw _

= (max@(t) + min 8(t)) [23)

o o—

Z(k—l)rrp <t -

where the maximum and minimum are over tg < M We also introduce two auxilary

variables 8§¥° = 65 and ¢ = sign <—_‘§—) We express ¢ in terms of 9“”1 and £4_1 as indicated below:

gd_ ave %
T = (T) .

(A2) In case |rg| > k1], if ri and g¢_) have the same signs then ¢; = |cx_1|sign(rk); if 7« and =4_; have
opposite signs then 5 = vylei_y[sign(ry). where 0 < ¥ < 1.

(A1) Compute

(A3) If 0 < |ri| < |ek—1| then gi = 921, where 0 < ¥ < 1.
(A4) If rp =0 then ¢ = 4.

-

Proposition 4.2 If the proposed control law is of the form (27) where ¢ is selected according to
steps (A1)-(A4), then

lim 83%¢ = 64, hm g = 0.

k—nc k—oo

Sketch of the Proof. The sequence || is non-increasing and bounded on [0.1]. Therefore. there exi-1-
b € [0.1] such that b = infy |cx|. We want to show that b = 0.

By contradiction, assume b # 0. Then, for £ = b—(—;—;—'-‘;—i—(‘ﬂ(—?—w;’{—n we can find an integer Ny such that for

all k > Ny [ex] = b < €. From (A2) and (A3) we conclude that only two cases are possible: ¢4 = b for all
k> Njoreg = ~-bforall k > VN,

Assume that the former case is true. Since the transient decays to zero and using continuity of # with
respect to ¢; and ¢; we assert that for & = %b:’AH‘ there exists an integer N, such that for any k& > V.

D2AET — € < 0N — 83 < BPAFT + &4,

0“ gaye
where A§* > 0. Note that _\9. > 0% > 0. Choosing an integer [ so that [ > Z—JKQ—,L + 1 we conclude

that 3
» (11.6 ave
;w Ap- '
Therefore, the former case can never occur. Similarly, we can verify that the latter case also leads 1o &
contradiction. Hence, b = 0.




6. CONCLUSION

In this paper the angular momentum expression for a planar free-free beam in space is derived. It is
shown how the general motion of the beam can be separated into rigid and elastic motions. The change
of shape of the beam is described by the Euler-Bernoulli equation with free-free boundary conditions.
Angular momentum conservation leads to the nonlinear dependence of the rigid motion on the shape of
the beam. As shown this dependence is non-integrable in the sense that a periodic change in shape of the
beam results in a non-zero rotation of the beam over one period. Approximate relationships expressing the
average rate of rotation of the beam in terms of the amplitudes and phases of periodic excitation of the
beam by internal actuators are derived. Finally, a control strategy for a planar asymptotic reorientation
maneuver is developed.

A general treatment of the interplay between deformations and rotations of deformable bodies is given
by Shapere and Wilczek.” Reyhanoglu and McClamroch® have developed a framework for reorientation
of multibody systems in space. In this paper, we have used the framework developed by Shapere and
Wilczek for the specific problem of reorientation of a free-free beam in space; our results represent, in a
certain sense, the limiting case of the multibody results obtained by Reyhanoglu and McClamroch when
the number of bodies increases without limit.

Although our study in this paper has been concerned with the ideal case of reorientation of a free—free
beam in space, we note that the same ideas are applicable to reorientation of a wide class of deformable space
structures, using only actuators embedded into the structure. In this sense, smart structures technology
can be used to accomplish a variety of efficient reorientation maneuvers for space structures.
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Fig 1. Inertial, Moving and Material coordinate frames.
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Fig 3. Amplitude modulation sequence
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